Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.580
Filtrar
1.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
2.
Helicobacter ; 29(2): e13069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516860

RESUMO

Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.


Assuntos
Adenocarcinoma , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Receptores Imunológicos/metabolismo , Receptores KIR/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
3.
J Investig Med High Impact Case Rep ; 12: 23247096241240176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504422

RESUMO

Gastric cancer ranks as the fifth leading cause of global cancer incidences, exhibiting varied prevalence influenced by geographical, ethnic, and lifestyle factors, as well as Helicobacter pylori infection. The ATM gene on chromosome 11q22 is vital for genomic stability as an initiator of the DNA damage response, and mutations in this gene have been associated with various cancers. Poly ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown efficacy in cancers with homologous recombination repair deficiencies, notably in those with ATM mutations. Here, we present a case of a 66-year-old patient with germline ATM-mutated metastatic gastric cancer with very high CA 19-9 (48 000 units/mL) who demonstrated an exceptional response to the addition of olaparib to chemo-immunotherapy and subsequent olaparib maintenance monotherapy for 12 months. CA 19-9 was maintained at low level for 18 months. Despite the failure of a phase II clinical trial on olaparib in gastric cancer (NCT01063517) to meet its primary endpoint, intriguing findings emerged in the subset of ATM-mutated patients, who exhibited notable improvements in overall survival. Our case underscores the potential clinical utility of olaparib in germline ATM-mutated gastric cancer and emphasizes the need for further exploration through larger clinical trials. Ongoing research and clinical trials are essential for optimizing the use of PARP inhibitors, identifying biomarkers, and advancing personalized treatment strategies for gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Ftalazinas , Piperazinas , Neoplasias Gástricas , Humanos , Idoso , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Helicobacter pylori/metabolismo , Células Germinativas/metabolismo , Células Germinativas/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
Cancer Lett ; 588: 216746, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38387756

RESUMO

Helicobacter pylori (H. pylori) infection is considered to be an important factor in gastric cancer (GC). Long noncoding RNA (lncRNA) and m6A modification are involved in the occurrence and development of GC, but the role of lncRNA m6A modification in the development of GC mediated by H. pylori is still unclear. Here, we found that H. pylori infection downregulated the expression of lnc-PLCB1 through METTL14-mediated m6A modification and IRF2-mediated transcriptional regulation. Overexpression of lnc-PLCB1 inhibited the proliferation and migration of GC cells, while downregulation of lnc-PLCB1 promoted the proliferation and migration ability of GC cells. In addition, clinical analysis showed that lnc-PLCB1 is lower in GC tissues than in normal tissues. Further study found that lnc-PLCB1 reduced the protein stability of its binding protein DEAD-box helicase 21 (DDX21) and then downregulated the expression of CCND1 and Slug, thereby playing tumour suppressing role in the occurrence and development of GC. In conclusion, the METTL14/lnc-PLCB1/DDX21 axis plays an important role in H. pylori-mediated GC, and lnc-PLCB1 can be used as a new target for GC treatment.


Assuntos
Adenina , Infecções por Helicobacter , Helicobacter pylori , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Regulação para Baixo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
5.
Antimicrob Agents Chemother ; 68(4): e0167923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38386782

RESUMO

The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , DNA Bacteriano/metabolismo
6.
Neoplasia ; 50: 100981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422751

RESUMO

PURPOSE: Helicobacter pylori (H. pylori) is a significant risk factor for development of gastric cancer (GC), one of the deadliest malignancies in the world. However, the mechanism by which H. pylori induces gastric oncogenesis remains unclear. Here, we investigated the function of IL-6 in gastric oncogenesis and macrophage-epithelial cell interactions. METHODS: We analyzed publicly available datasets to investigate the expression of IL-6 and infiltration of M2 macrophages in GC tissues, and determine the inter-cellular communication in the context of IL-6. Human gastric epithelial and macrophage cell lines (GES-1 and THP-1-derived macrophages, respectively) were used in mono- and co-culture experiments to investigate autocrine-and paracrine induction of IL-6 expression in response to H. pylori or IL-6 stimulation. RESULTS: We found that IL-6 is highly expressed in GC and modulates survival. M2 macrophage infiltration is predominant in GC and drives an IL-6 mediated communication with gastric epithelium cells. In vitro, IL-6 triggers its own expression in GES-1 and THP-1-derived macrophages cells. In addition, these cell lines are able to upregulate each other's IL-6 levels in an autocrine fashion, which is enhanced by H. pylori stimulation. CONCLUSION: This study indicates that IL-6 in the tumor microenvironment is essential for intercellular communication. We show that H. pylori enhances an IL-6-driven autocrine and paracrine positive feedback loop between macrophages and gastric epithelial cells, which may contribute to gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , Interleucina-6/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Neoplasias Gástricas/patologia , Macrófagos/patologia , Carcinogênese/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Microambiente Tumoral
7.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396647

RESUMO

Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for Hp urease (HpU). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel HpU inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea.


Assuntos
Helicobacter pylori , Helicobacter pylori/metabolismo , Urease/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ureia/farmacologia
8.
Biophys Chem ; 307: 107193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320409

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 µM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.


Assuntos
Helicobacter pylori , Hemina , Humanos , Hemina/metabolismo , Helicobacter pylori/metabolismo , Fibronectinas/metabolismo , Lactoferrina/metabolismo , Ligação Proteica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heme/metabolismo , Fibrinogênio , Plasminogênio/metabolismo , Íons/metabolismo , Mucinas/metabolismo
9.
J Transl Med ; 22(1): 148, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351014

RESUMO

Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Regulação para Cima/genética , Neoplasias Gástricas/patologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transformação Celular Neoplásica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
10.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176008

RESUMO

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecções por Helicobacter/microbiologia
11.
Clin J Gastroenterol ; 17(2): 240-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289459

RESUMO

We report the case of twins diagnosed with chronic enteropathy associated with the SLCO2A1 gene (CEAS) based on characteristic ulcer findings, which required 8 years to diagnose. Both twins had similar symptoms, including anemia and growth failure but the gastrointestinal tract was not evaluated initially because of mild symptoms that were considered consistent with psychological etiology. The endoscopic findings of the firstborn child showed spiral ulcer scars and pseudodiverticulum formation without Helicobacter pylori infection or eosinophilic infiltration in the duodenum. Since the twins presented with ulcers of an unknown cause simultaneously and the first-born child had a spiral ulcer, CEAS was suspected. Genetic analysis and high levels of prostaglandin E major urinary metabolites in the urine led to a definitive diagnosis of CEAS.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doenças Inflamatórias Intestinais , Transportadores de Ânions Orgânicos , Criança , Humanos , Úlcera , Helicobacter pylori/metabolismo , Duodeno , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo
12.
J Bacteriol ; 206(1): e0030923, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38179929

RESUMO

In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.


Assuntos
Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Epigenoma , Metiltransferases/genética , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Metilação de DNA
13.
Int J Biol Macromol ; 259(Pt 2): 129316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218286

RESUMO

Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.


Assuntos
Helicobacter pylori , Helicobacter pylori/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Mutação , Temperatura , Estabilidade Enzimática
14.
Nat Commun ; 15(1): 669, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253620

RESUMO

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Assuntos
Adenosina , Infecções por Helicobacter , Helicobacter pylori , Receptores Depuradores Classe E , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Catalase/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , RNA Mensageiro/genética , Receptores Depuradores Classe E/genética
15.
Cell Mol Gastroenterol Hepatol ; 17(2): 292-308.e1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37820788

RESUMO

BACKGROUND & AIMS: Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS: Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS: Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS: Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Helicobacter/microbiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Helicobacter pylori/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/metabolismo , Glicólise , Óxido Nítrico Sintase Tipo II/metabolismo
16.
Apoptosis ; 29(3-4): 439-456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38001345

RESUMO

Gastric cancer is strongly associated with Helicobacter pylori (H. pylori) infection. However, the molecular mechanisms underlying the development of gastric cancer in the context of H. pylori infection, particularly in relation to ferroptosis, remain poorly understood. In this study, we investigated the role of the Helicobacter-associated ferroptosis gene YWHAE in gastric cancer. We analyzed multi-omics data, performed molecular docking, and employed machine learning to comprehensively evaluate the expression, function, and potential implications in gastric cancer, including its influence on drug sensitivity, mutation, immune microenvironment, immunotherapy, and prognosis. Our findings demonstrated that the YWHAE gene exhibits high expression in both H. pylori-associated gastritis and gastric cancer. Pan-cancer analysis revealed elevated expression of YWHAE in several cancer types compared to normal tissues. We also examined the methylation, single nucleotide variations (SNVs), and copy number variations (CNVs) associated with YWHAE. Single-cell analysis indicated that the YWHAE gene is expressed in various cell types, with its expression level potentially influenced by H. pylori infection. Functionally, we observed a positive correlation between YWHAE gene expression and ferroptosis in gastric cancer and associated with multiple cancer-related signaling pathways, including MAPK, NF-κB, and PI3K. Furthermore, we predicted five small molecule compounds that show promise for treating gastric cancer patients and screened five drugs with the highest correlation with YWHAE and validated them by molecular docking. Additionally, significant differences were observed in various immune cell types and immunotherapeutic response between the high and low YWHAE gene expression groups. Moreover, we found a positive correlation between YWHAE gene expression and the tumour mutation burden (TMB). By applying 10 machine learning algorithms and 101 integration combinations, we developed a prognostic model for YWHAE-related genes. Finally, qRT-PCR and immunohistochemistry (IHC) consistently demonstrated the upregulation of YWHAE in gastric cancer. In conclusion, we conducted a comprehensive analysis of YWHAE gene in gastric cancer. Our findings provided novel insights into the role of YWHAE as a gene associated with H. pylori infection and ferroptosis in gastric cancer and expanded our understanding of the molecular mechanisms underlying gastric carcinogenesis.


Assuntos
Ferroptose , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Helicobacter/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Variações do Número de Cópias de DNA , Ferroptose/genética , Multiômica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Apoptose , Microambiente Tumoral , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
17.
Int J Biol Macromol ; 256(Pt 2): 128490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035967

RESUMO

This study aimed to develop a sodium alginate (Na alginate) and mung bean protein (MBP) raft complex to improve gastric reflux symptoms. Na alginate and MBP complexes with different ratios (1:1, 2:1, and 3:1, respectively) were used for raft formulations through a wet Maillard reaction. Structural properties of raft strength, reflux resistance, intrinsic fluorescence emission spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were investigated for rafts. The suspension 1:1 Na alginate/MBP with 0 h Maillard reaction time exhibited the lowest sedimentation volume among the suspensions. In contrast, 3:1 Na alginate/MBP with 6 h Maillard reaction time showed the highest sedimentation volume. Based on the results, the 3:1 Na alginate/MBP rafts had the best results, and the results were within acceptable limits. Functional properties, including antioxidant properties, the Helicobacter pylori inhibition assay, the pancreatic lipase inhibition assay, and angiotensin-converting enzyme (ACE) inhibition, were investigated for rafts. The Na alginate/MBP raft has similar characteristics to Gaviscon syrup and can be used for obesity, Helicobacter pylori infection, high blood pressure, and gastric reflux.


Assuntos
Refluxo Gastroesofágico , Infecções por Helicobacter , Helicobacter pylori , Vigna , Humanos , Antiácidos/química , Vigna/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/metabolismo , Refluxo Gastroesofágico/tratamento farmacológico , Alginatos/química
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 305-315, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436497

RESUMO

Inhibition of Helicobacter pylori urease is an effective method in the treatment of several gastrointestinal diseases in humans. This bacterium plays an important role in the pathogenesis of gastritis and peptic ulceration. Considering the presence of cysteine and N-arylacetamide derivatives in potent urease inhibitors, here, we designed hybrid derivatives of these pharmacophores. Therefore, cysteine-N-arylacetamide derivatives 5a-l were synthesized through simple nucleophilic reactions with good yield. In vitro urease inhibitory activity assay of these compounds demonstrated that all newly synthesized compounds exhibited high inhibitory activity (IC50 values = 0.35-5.83 µM) when compared with standard drugs (thiourea: IC50 = 21.1 ± 0.11 µM and hydroxyurea: IC50 = 100.0 ± 0.01 µM). Representatively, compound 5e with IC50 = 0.35 µM was 60 times more potent than strong urease inhibitor thiourea. Enzyme kinetic study of this compound revealed that compound 5e is a competitive urease inhibitor. Moreover, a docking study of compound 5e was performed to explore crucial interactions at the urease active site. This study revealed that compound 5e is capable to inhibit urease by interactions with two crucial residues at the active site: Ni and CME592. Furthermore, a molecular dynamics study confirmed the stability of the 5e-urease complex and Ni chelating properties of this compound. It should be considered that, in the following study, the focus was placed on jack bean urease instead of H. pylori urease, and this was acknowledged as a limitation.


Assuntos
Helicobacter pylori , Urease , Humanos , Urease/química , Urease/metabolismo , Cisteína/farmacologia , Simulação de Acoplamento Molecular , Helicobacter pylori/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tioureia/química , Tioureia/farmacologia , Relação Estrutura-Atividade
20.
Microbiol Spectr ; 12(1): e0262323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084974

RESUMO

IMPORTANCE: The antimicrobial resistance of Helicobacter pylori (Hp) currently poses a threat to available treatment regimens. Developing antimicrobial drugs targeting new bacterial targets is crucial, and one such class of drugs includes Hp-flavodoxin (Hp-fld) inhibitors that target an essential metabolic pathway in Hp. Our study demonstrated that combining these new drugs with conventional antibiotics used for Hp infection treatment prevented the regrowth observed with drugs used alone. Hp-fld inhibitors show promise as new drugs to be incorporated into the treatment of Hp infection, potentially reducing the development of resistance and shortening the treatment duration.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Flavodoxina/metabolismo , Helicobacter pylori/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...